Iron Enhanced Sand Filtration for Dissolved Phosphorous Removal

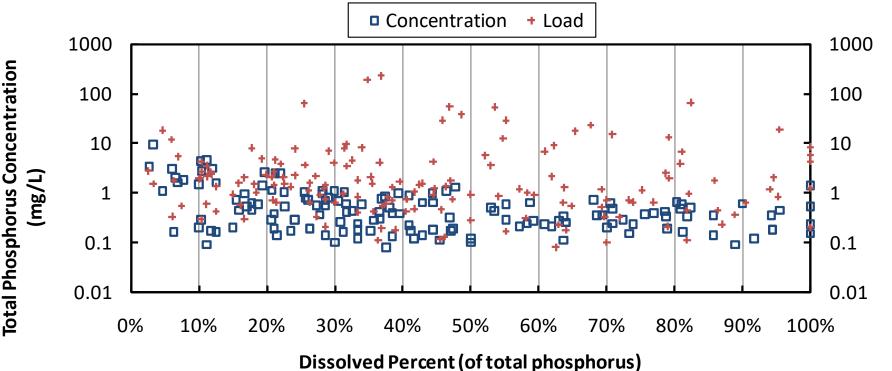
Pete Weiss, PhD, PE Professor, Department of Civil Engineering

INAFSM 2017 Annual Conference

Outline

- The problem
- What is Iron Enhanced Sand Filtration (IESF)
- Field Applications
 - Urban surface sand filter
 - Agricultural surface sand filter
 - Pond perimeter sand filter
 - IESF rain garden
- Conclusions and lessons learned

Salt Creek, Porter County, IN


- Avg P = 3.2 mg/L
- Target = 0.08 mg/L
- Current watershed runoff: 732 lb P/year
- Watershed runoff target: 255 lb P/year
- 65% Reduction

Salt Creek Headwaters near Valparaiso, IN. Photo: Salt Creek Watershed Mgt Plan, 2008

Phosphorous Loading

- Average Values: Total=0.27 mg/L; Dissolved=0.12 mg/L
 - 44% Dissolved and 56% particulate, on average

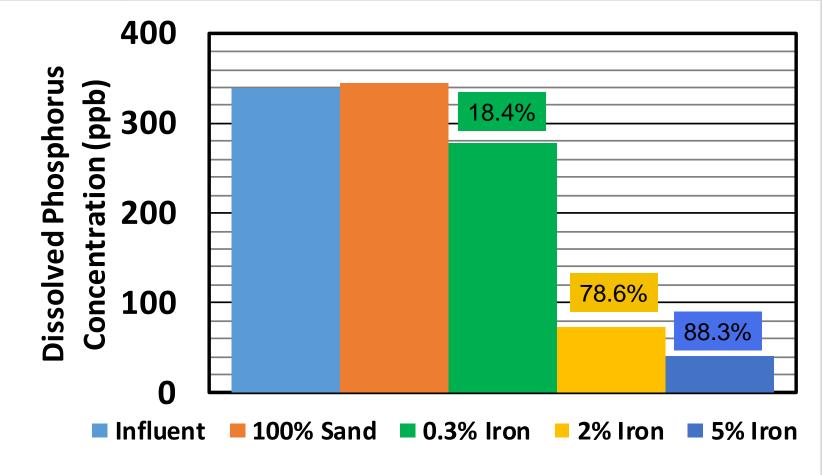
Adapted from Brezonik and Stadelmann, 2002 Image Courtesy of Andy Erickson

Total Phosphorus Load (kg/event)

Must Target Dissolved Phosphorus

- TMDL's often target 60% or more P reduction
- Particulate P concentrations: 56% on average (or less)
- Dissolved P is more bioavailable
- Conventional SCM's typically do not retain dissolved P
- Some practices, like rain gardens, may export P

Iron-Enhanced Sand Filtration



- Research at U of MN
 used steel wool
- Sand: ASTM C-33
- Column experiments with 0%, 0.3%, 2%, 5% iron by weight
- Iron rusts (+) & captures phosphate (-)

Column Experiments at U of MN. Photo courtesy of Andy Erickson

Experimental Results at U of MN

Treated depth = 189 m Erickson et al. 2012

Field Applications of IESF

- Iron shavings:
 5-7% by weight
 - Add ~5-10% to total cost of new filter
 - Capable of retaining TSS, particulate and dissolved P
 - 40+ Installed

Iron enhanced surface sand filter, Maplewood, MN. Photo: RWMWD

Maplewood, MN IESF

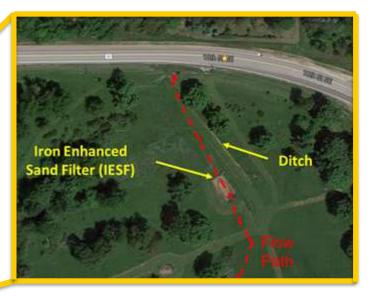
- 5% iron, mixed in parking lot
- Sand filter area
 = 0.27 acres
- Storage volume
 = 0.65 acre-feet
- Watershed: 8

 acres, 81%
 impervious,
 mostly HSG B
 soils

Photo: RWMWD

Maplewood IESF Performance

Photo: Andy Erickson


Maplewood IESF Performance

2009-2010 Monitoring Data (n=36)	Total P	Phosphate
Average Inflow (ppb)	103	15
Average Outflow (ppb)	25	8
Retention	76%	47%
Samples below detection (10 ppb)	0%	65%

Samples below detection assumed to have 5 ppb phosphate

Photo: Andy Erickson

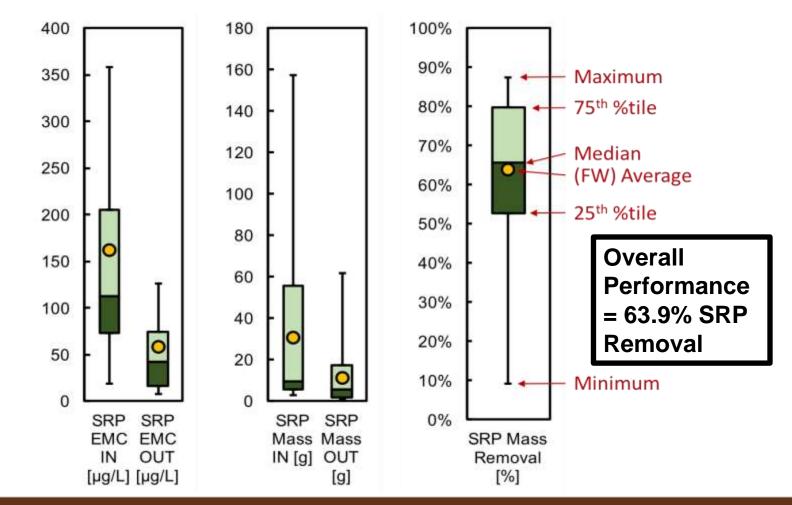
- Installed in 2012
- Watershed: 19 acres of farmland
- Discharges to Martha Lake

Photos: Wright Co., MN and Google Maps

IESF Design:

- 20 feet by 50 feet in area
- 1 foot thick mix of ASTM C-33 sand and 5% iron shavings
- 6 inches of pea gravel with a perforated underdrain system (2, 6-inch PVC pipes)
 Sand and gravel lined with an impermeable liner

Construction: Excavation complete


The

Construction: Impermeable liner

Construction: Iron shavings spread on surface

Construction: Iron shavings spread on surface. Plywood is to protect liner from rototiller blades.

Martha Lake, MN IESF Performance

2015-2016 Performance (n = 33, treated depth = 290 m) (Erickson et al. 2017)

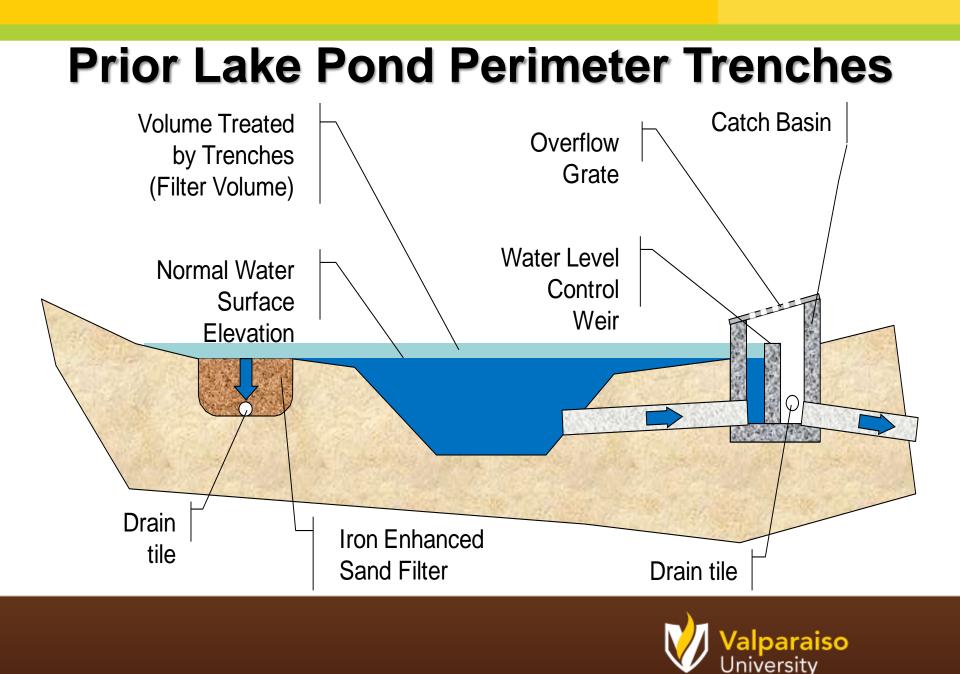
Martha Lake, MN IESF Maintenance

Martha Lake, MN IESF Maintenance

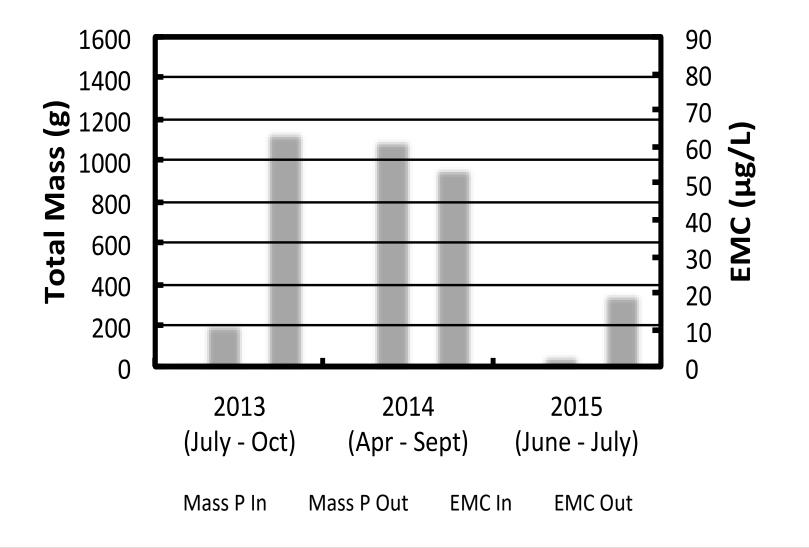
IESF Routine Maintenance:

- Remove vegetation, algae, iron ochre
- Scrape and level surface
- Once or twice per month (May-Sept)
- 1-2 people, < 1 hr each per visit

IESF Non-Routine Maintenance:


 May 2016: Remove substantial amounts of build up (2 people, 2 hrs each)

Future Potential Maintenance:


- Scrape and remove top layer
- Replace iron/sand mix that was removed
- Remove and replace entire media bed

Prior Lake Pond Perimeter Trenches

2013-2015 Performance

2014 Monitoring Results

	Total Mas	% Mass	
Event	nt Influent Load Effluent Load		Load
	(grams)	(grams)	Retained
1	0.6	3.7	-470
2 to 5	425	310	27
6	13	31	-127
7	35	42	-21
8	74	42	42
9	23	35	-51
10	0.3	3.1	-990
11	118	71	40
Total	689	538	22

Pond Perimeter Trenches-Investigation

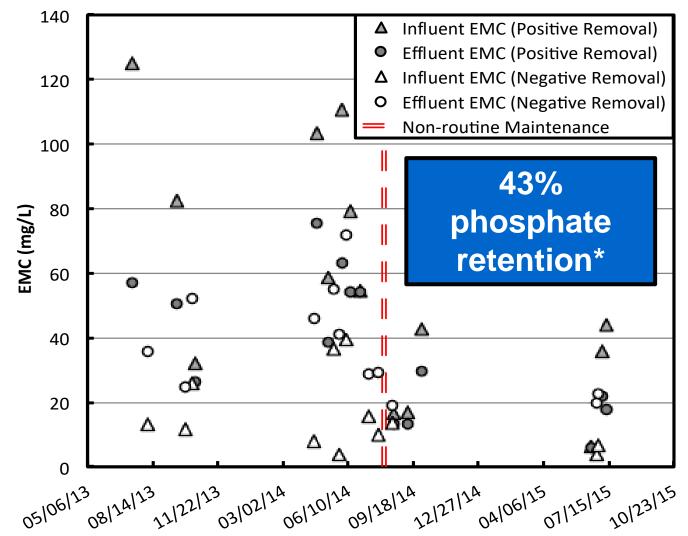
Pond Perimeter Trenches-Investigation

Pond Perimeter Trenches-Investigation

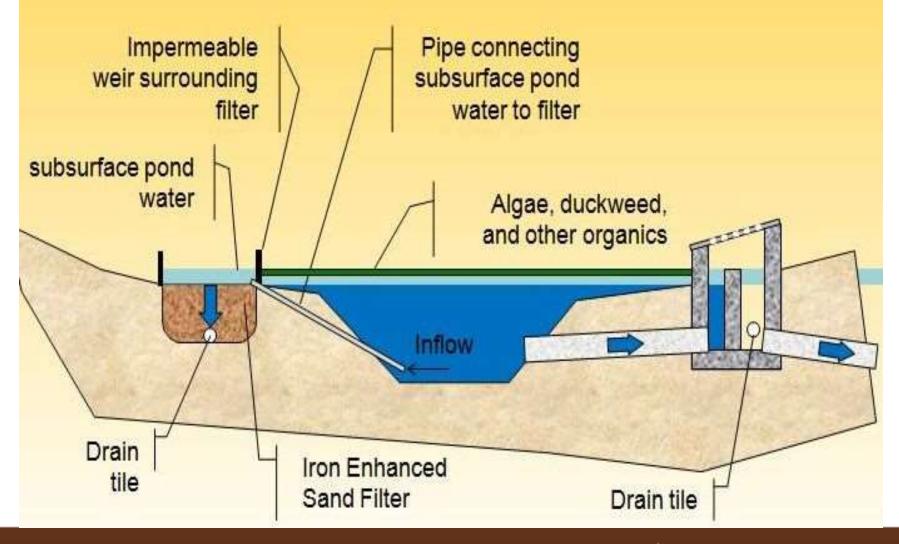
- Routine maintenance < 1 month</p>
 - Pulling or raking weeds
 - Remove deposited vegetation
 - Raking surface (disturb filter to depth of 1-3")
- Need for non-routine maintenance

Non-Routine Maintenance

- N
 - Non-routine maintenance
 - Remove gray muck and algae
 - Break up surface by tilling
 - Break up iron clumps w/ sledgehammer
 - 8 hours each for team of three


Non-Routine Maintenance

Non-Routine Maintenance


Impact of Non-Routine Maintenance

* After non-routine maintenance

Proposed Revised Design

IESF Capacity/Lifespan

Application	Estimated Treated Depth (m)	Average Influent (µg/L)	Influent Mass (g/m²)	Phosphate Load Captured
Laboratory (5%)	189	340	64.3	88%
Surface Sand (Agricultural)	290	162	47.0	64%
Pond-Perimeter Trench (Urban)	548	69	37.8	43%*

*After non-routine maintenance Slide courtesy of Andy Erickson

Rain Gardens

- Aesthetically pleasing
- Reduce runoff volume
- Remove TSS & metals
- Often export PO₄-³
 - 1. Exported 100% more P
 - 2. Influent P = 0.13 mg/L, effluent P up to 0.50 mg/L
 - 3. Others found similar results

1) Dietz & Clausen 2005, 2) Morgan 2011, 3) Hatt et al. 2008, Li and Davis 2009, Hunt and Lord, undated

Proposed New Design: Iron-Enhanced Rain Gardens

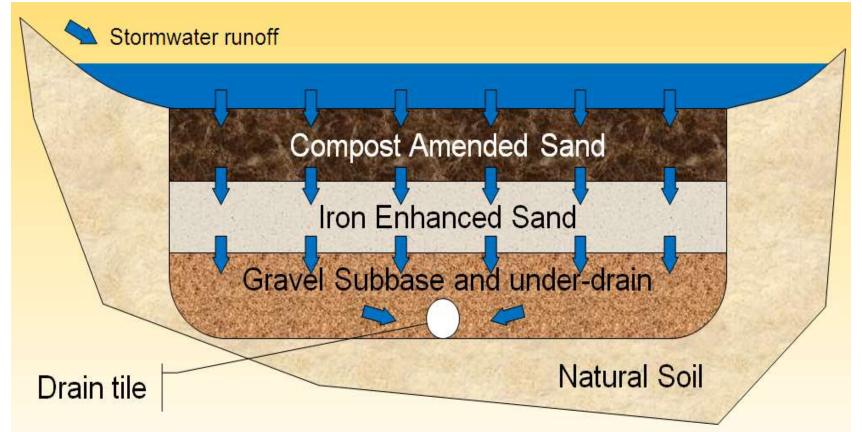
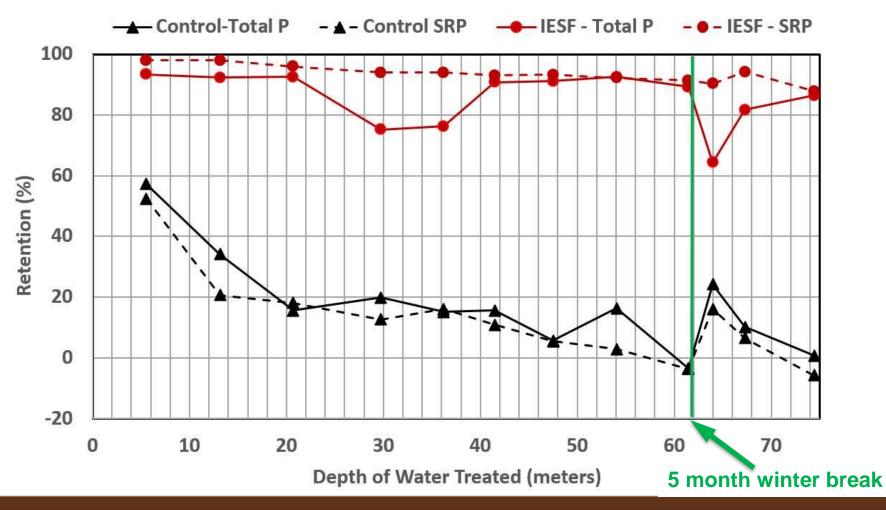


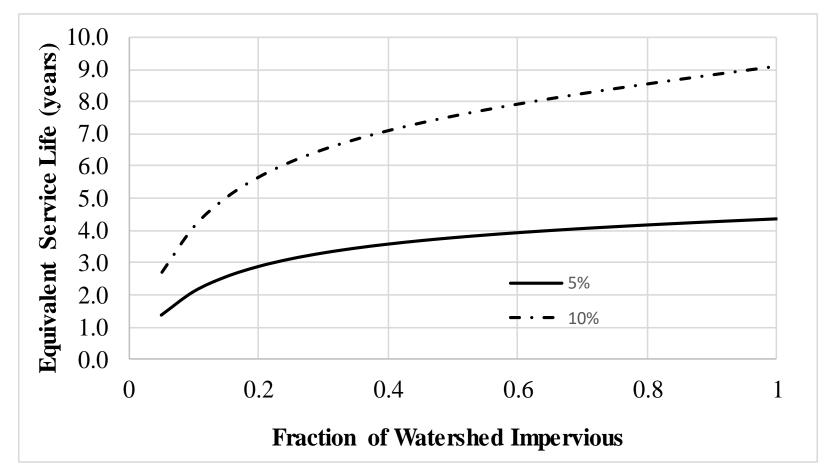
Image: Andy Erickson

Experimental Iron-Enhanced Rain Gardens

- Assess gardens constructed in plastic boxes with drain tile
 - 15 cm gravel (2.5-5 cm) layer
 - 46 cm sand layer
 - 30 cm compost
 (15%) and sand
 (85%) mix


Influent Phosphorous Levels

- Influent Total Phosphorous
 - Average of 0.54 mg/L P
- Influent SRP (i.e. dissolved phosphorus)
 - Average of 0.50 mg/L P
- Stormwater Median Values (Maestre and Pitt 2005)
 - TP = 0.27 mg/L (COV = 1.5)
 - SRP = 0.13 mg/L (COV = 1.6)


IESF Rain Garden Results

Analysis of a Field Application

(87% Retention of SRP)

Conclusions & Lessons Learned

- IESF can increase dissolved
 phosphorus retention
- Routine maintenance is a must (4 times/year to 2 times/month)
- Non-routine maintenance ~1 time/year (pond perimeter filters)
- Minimize vegetative deposition
 on filter surface
- Filter should dry between events (drain time = 48 hours)

Connelly-GPM Iron Aggregate ETI CC-1004

Conclusions & Lessons Learned

- Verify purity & effectiveness of iron
- Size underdrains to not limit flow
- Water contact time with iron must be adequate
- Iron enhancement can eliminate net export of phosphorus from rain gardens

Connelly-GPM Iron Aggregate ETI CC-1004

Acknowledgements

Collaborators:

John S. Gulliver (UMN) Andy J. Erickson (UMN) Zuhdi Aljobeh (Valparaiso University)

Funding Provided By: Indiana DNR, Lake Michigan Coastal Program; EPA/MPCA; Valparaiso University; UMN; Wright County, MN Soil and Water Conservation District

Donors: Cardno Native Plant Nursery (vegetation), Connelly-GPM Chicago (iron shavings), Duneland Sand Enterprise (compost)

Sponsors and Partners: City of Valparaiso; Central Elementary School in Valparaiso; Ramsey Washington Metro Watershed District; City of Prior Lake, MN; Wright County, MN; Multiple Technical Advisory Panels and stormwater professionals; many others

Thank you for your attention!

Questions?

Peter.Weiss@valpo.edu

Golden Lake Iron Enhanced Sand Filter, Centennial Green Park, Blaine, MN. Photo: Rice Creek Watershed District (MN)

References (page 1)

- Brezonik, P.L. and Stadelmann, T.H. 2002. Analysis and Predictive Models of Stormwater Runoff Volumes, Loads, and Pollutant Concentration from Watersheds in the Twin Cities Metropolitan Area, Minnesota, USA. *Water Research*, 36: p. 1743-1757.
- Dietz, M.E., and Clausen, J.C. 2005. A Field Evaluation of Rain Garden Flow and Pollutant Treatment. *Water, Air, and Soil Pollution*, 167:123-138.
- Erickson, A.J., Gulliver, J.S., and Weiss, P.T. 2017. *Monitoring an Iron-Enhanced Sand Filter for Phosphorus Capture from Agricultural Tile Drainage*. St. Anthony Falls Laboratory Report #581, Prepared for the USEPA and MPCA.
- Erickson, A.J., Weiss, P.T., and Gulliver, J.S. 2015. *Monitoring an Iron-Enhanced Sand Filter Trench for the Capture of Phosphate from Stormwater Runoff.* St. Anthony Falls Laboratory Report #575, Prepared for the USEPA and MPCA.
- Erickson, A.J., Gulliver, J.S. and Weiss, P.T. 2012. Capturing Phosphates with Iron Enhanced Sand Filtration. *Water Research*, 46(9), 3032–3042.
- Erickson, A. J., and Gulliver, J. S. 2010. *Performance Assessment of an Iron-Enhanced Sand Filtration Trench for Capturing Dissolved Phosphorus*. St. Anthony Falls Laboratory Project Report #549, Prepared for the City of Prior Lake.
- Erickson, A.J., Gulliver, J.S., Weiss, P.T., and Huser, B.J. 2010. Iron Enhanced Sand Filtration for Stormwater Phosphorus Removal. *Proceedings of the Transportation Research Board 89th Annual Meeting*, Washington, D.C., January 10-14.

References (page 2)

- Erickson, A.J., Gulliver, J.S. and Weiss, P.T. 2007. Enhanced sand filtration for storm water phosphorus removal. *Journal of Environmental Engineering*, 133(5), 485-497.
- Hatt, B.E., Fletcher, T.D., and Deletic, A. 2008. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. *Journal of Hydrology*, 365:310-321.
- Hunt, W.F., and Lord, W.G. undated. *Urban waterways: Bioretention performance, design, construction, and maintenance*, North Carolina Cooperative Extension Service, Raleigh, NC, pp: 1-9.
- Li, H. and Davis, A.P. 2009. Water quality improvement through reductions of pollutant loads using bioretention. *Journal of Environmental Engineering*, 135(8): 567-576.
- Morgan, J.G., 2011. Sorption and Release of Dissolved Pollutants Via Bioretention Media, Master's Thesis, The University of Minnesota, Minneapolis, MN.
- Weiss, P.T., Aljobeh, Z.Y., Bradford, C., and E.A. Breitzke. 2016. An Iron-Enhanced Rain Garden for Dissolved Phosphorus Removal, *Proceedings of the World Environmental and Water Resources Congress*, May 22-26, West Palm Beach, FL, USA. pp. 185-194. doi: 10.1061/9780784479889.020.

