Asset Management and Criticality Assessment for Public Works Infrastructure

Steven E. Eubanks, P.E., CFM City of Fort Worth

Asset Management

- A system of monitoring and maintaining assets of value.
- A systematic process of constructing, operating, maintaining, upgrading, rehabilitating and replacing assets costeffectively.

-Paraphrased from Wikipedia

Asset Management

"For utilities [and public works], asset management may be defined as managing infrastructure capital assets to minimize the total cost of owning and operating them, while delivering the service levels customers desire."

 Adapted from EPA's Fact Sheet: "Asset Management for Sewer Collection Systems"

Why Asset Management?

- Promotes quality infrastructure for:
 - Public health and safety
 - Our economic engine
 - Sustainability
- Promotes innovation and efficiencies
- Leads to better informed and justified investment decisions
- Supports funding justification

Asset Management Can Answer:

- What is the current state of my assets?
- What is my required sustained Level of Service?
- Which of my assets are critical for sustained performance?
- What are my best minimum lifecycle cost CIP and O&M strategies?
- Given the above, what is my best long-term funding strategy?

Corporate Direction

- Vision/Mission
- Service Level Goals
- Strategic Plans
- Performance Measures
- Budget

Work Programs

- Capital Programs
- Maintenance
- Process Improvements
- Master Planning

An Ongoing Program

Asset Management Plans

- Inventory/Condition
- Forecasts/Scenarios
- Risk Management

Information & Data

- Asset Inventory & Condition
- Costs
- Capacity
- Demand

In a Nutshell...

Asset management is balancing the total cost of ownership with sustainable levels of service.

Level of Service

- Transportation Infrastructure and Supply Utilities have service levels set by customers: pressure, voltage, road condition, etc.
- Collection Utilities historically have little demand: just make it go away (although Sanitary Sewer LOS now subject to EPA)
- Storm Drain LOS is "don't flood me" [often]
- Public Works do not have federal mandates for LOS and similarly do not have independent revenue stream needed to meet LOS demands

Asset Depreciation

Life-Cycle Decision Support

Time (NTS)

Asset Decay Curves

TIME

Overview of the Asset Management Elements

Also, Performance Management and Monitoring

Asset Criticality

- Focuses on:
 - Managing overall risk
 - Identifying the assets that pose the most risk
 - Data collection activities and frequency
 - Condition assessment \rightarrow remaining useful life
- Ties maintenance to capital planning, strengthening their interdependence
- Enables informed decision making

Business Risk Exposure

Probability of Failure

Risk Assessment Matrix

Risk is defined as **Probability of Failure** (PoF) multiplied by **Consequence of Failure** (CoF).

 PoF and CoF are scored based on applicable factors available from GIS.

FORT WORTH STORMWATER'S EXPERIENCE

Criticality Assessment

Probability of Failure

- What types of failure are most likely functional (clogging) or structural?
- What is likely to cause those failures?
- What factors best capture those causes?
- How much weight should each factor have?
- Straight-line depreciation used since no comprehensive condition assessment.

Consequence of Failure

- If a failure occurs, what happens?
- For functional failure, consequences focus on what is subject to flooding
- For structural failure, repair difficulty and cost plays large role
- Are there nearby critical facilities (fire stations, hospitals, CBD, etc.) at risk?

Determining Asset Criticality Factors

- Fort Worth Stormwater's experience
- Developed by GIS, Engineering and Field Operations staff
 - Several work sessions
 - Determined assets to be evaluated
 - Brainstormed criticality factors
- Reviewed later for feasibility
 - Availability of data (e.g. perched outfalls)
 - Can be easily analyzed by GIS tools
 - Repeatable annually

all/Infall Clogging Potentia] - Channel Type Upstream Siltation) Natural Concrete . Opening of Asset (Pipe Size) Location is System - downstream ?fhn accum. higher risk - Velocity-flow (PHW) - Apron. - High High 4 Quanity-manyin area Angle to channel WO-207/207E - # of times cleaned 310-Accomp. Ditch List

Assets Considered

- Pipes our primary focus
 - Mains, Culverts and "Transitions"
- Inlets clogging failure most common issue
- Outfalls scour and erosion most common
- Infalls clogging failure most common
- **Channels** future (after mapping)
- Drains not many; slotted & french
- Manholes very few ever fail

Stormwater Asset Summary

Asset Class		Туре	Count	Length	
				(Feet)	(Miles)
Pipe			21,921	4,031,330	763.50
	Culvert	Line	3,785	382,601	72.46
	Gravity Main & Transition	Line	18,136	3,648,729	691.04
Inlet		Point	26,362		
Outfall		Point	7,627		
Infall		Point	6,012		

Estimated Effective Life

Asset Class	Material	EEL (Years)
Gravity	RCP, CIP	
Mains, Transitions	Cast Iron, Concrete, HDPE, PVC, Corrugated Metal with Tar Lining	75
and Culverts	Corrugated Iron, Corrugated Metal, Metal, Masonry, VCP, Wood, Other, Unknown	50
Inlets	ALL	75
Infalls	ALL	75
Outfalls	ALL	75
Channels	Not Yet Evaluated	??

PIPES Probability of Failure

30 %

30 %

20 %

- Percent Consumed
 - Based on Estimated Effective Life
 - Straight-Line Depreciation
 - Condition Assessment Better If Available
- Capacity
 - Based on Pipe Grade
- Operating Environment 20 %
 - Based on Zoning and Activity Areas
- Pipe Material
 - Double Counted with Percent Consumed

	Gravity/Culvert/Transition					
POF Factor	Weight	Rating	Description	Notes		
Percent Consumed	4 3	Age/EEL	Actual Age ÷ EEL	NULL IO_DATE = 1970		
	3	1	А	Source: BGE Graded_Pipes output		
		2	В	A is excellent and F is failure Null pipe grades will be reassigned in Scenario Analysis (IO Toolset) with the following criteria:		
Capacity		3	С			
		4	D	 Percent Consumed ≤ 5 = A grade 		
		5	F	2. Percent Consumed > 5 = F grade		
	2	1	Zoning A (all sizes), B, R-1 or R-2 single- or two-family residential districts	CFWGIS.DBO.ADM_ZONING w/ query: ZONING = 'A-10' OR ZONING = 'A-2.5' OR ZONING = 'A- 2.5A' OR ZONING = 'A-21' OR ZONING = 'A-43' OR ZONING = 'A-5' OR ZONING = 'A-7.5' OR ZONING = 'AR' OR ZONING = 'B' OR ZONING = 'R-1' OR ZONING = 'R-2'		
Operating Environment (High Traffic		2	All other zoning districts	CFWGIS.DBO.ADM_ZONING w/ query: ZONING <> 'A-10' AND ZONING <> 'A-2.5' AND ZONING <> 'A-2.5A' AND ZONING <> 'A-21' AND ZONING <> 'A- 43' AND ZONING <> 'A-5' AND ZONING <> 'A-7.5' AND ZONING <> 'AR' AND ZONING <> 'B' AND ZONING <> 'R- 1' AND ZONING <> 'R-2'		
/Density)		+1	Within Central City	CFWGIS.DBO.ADM_CENTRAL_CITY_BOUNDARY		
		+1	Within Growth Center	CFWGIS.DBO.ADM_GROWTH_CENTERS		
		+1	Within TIF, Urban Village and/or Commercial Corridor	CFWGIS.DBO.ADM_TIFS CFWGIS.DBO.ADM_URBAN_VILLAGES CFWGIS.DBO.ADM_COMMERCIAL_CORRIDORS		
		Create a fie field is the	eld for each factor and a Operating Environment	ssign a value by using 'Select by Location'. Sum of each score. Maximum rating is 5.		
		1	HDPE, RCP and DIP			
Pipe Material	≩ 2	2	PVC, Other, Corrugated Metal with Tar Liner			
Material		3	All Others	Cast Iron, Concrete, Wood, VCP, Masonry, Corru-gated Iron, Corrugated Metal, Metal, and Unknown. Should we consider 5 points for this class?		
Total	10					

 Report table includes rating details

 Notes by GIS staff provide details of the analysis

 Allows us to update analysis annually

PIPES Consequence of Failure

Considers Both Flood Damage and Repair Cost

- Pipe Size 40 %
- Proximity to Buildings 20 %
- Proximity to Roadways
 20 %
- Critical Areas Served 20 %

Pipe Grades

Probability of Failure

Consequence of Failure

Business Risk Exposure

INLETS

- Functional failure (clogging) of much greater frequency than structural failure
- PoF focuses on inlet size, inlet type and off-street vs. on-street
- CoF focuses on proximity of structures and critical facilities
- Redundancy included as consequence factor

- Most high risk inlets inside the loop
- Highest concentration is downtown area

OUTFALLS

- Erosion and scour are greatest issues.
- Each outfall pipe considered separately.
- PoF weighted toward pipe system outfalls vs. culverts.
- Velocity is other key PoF factor.
- CoF considers distance from roadway both to identify failure before it becomes significant, as well as access difficulty.

INFALLS

- Clogging considered the major issue
- Primarily culverts
- PoF considers channel type (structural, earthen, or natural) for debris potential
- PoF also based on City's "ditch list"
- Smaller pipes have higher PoF but larger pipes have higher CoF
- Redundancy considered as CoF factor

Asset Management

REPLACEMENT COST

Replacement Cost

- Cost information is imperative in the valuation of assets and life-cycle costing.
- Can use depreciated value for current assets.
- But for financial programming, replacement cost is needed.
 - Most often project construction costs are used
 - Can use present-day costs or future costs
- Can be used to put value on entire system, or can limit to most critical assets.

Replacement Cost Issues

- Stormwater projects often require replacing numerous utilities and re-paving roadways.
- Using this approach citywide would yield costs so high as to lose credibility.
- "Asset" costs for storm drains developed using RCP & box manufacturer's price list.
- Expected to still yield astronomically high number, but much more defensible.
- Important tool for advocating funding needs.

Replacement Cost Source

- City "installed" prices from 2014 developer agreement were low.
- Used 2015 purchase prices instead.
- Used RCP prices.
- For all other shapes, used box prices for same width x height.

Replacement Pipe Costs

Dia. (in)	Cost per LF	Dia. (in)	Cost per LF	Dia. (in)	Cost per LF
≤ 21"	\$ 43.00	42"*	\$ 148.00	84"	\$ 556.00
24"*	\$ 54.00	48"*	\$ 180.00	90"	\$ 664.00
27"*	\$ 62.00	54"*	\$ 241.00	96"	\$ 753.00
30"*	\$ 73.00	60"	\$ 285.00	108"	\$ 1,000.00**
33"*	\$ 90.00	66"	\$ 350.00	120"	\$ 1,275.00**
36"*	\$ 107.00	72"	\$ 409.00	132"	\$ 1,500.00**
39"*	\$ 134.00	78"	\$ 486.00	* Or smaller sizes	** Estimated

Box Replacement Cost Determination

Other Replacement Costs

Infrastructure Feature	Replacement Cost
All curb inlets up to 10' length	\$3,000.00
All curb inlets > 10' length	\$6,000.00
All drop inlets	\$3,500.00
Infalls and Outfalls (round)	\$100 * DIAM_IN
Infalls and Outfalls (other)	\$1,200 * WIDTH_FT
Manholes	\$10,000

Current Status

- Maintenance and engineering staff to vet PoF and CoF factors for infalls and outfalls
- GIS Staff to analyze infalls, outfalls and system replacement cost or value.
- Before beginning a channel mapping program, plan to develop criticality assessment factors to identify data needs.
- Traffic Management adopting criticality assessment process.

Criticality Moving Forward

- Routine updates annually
- Channel criticality after mapping
- Develop condition assessment

program to use condition instead of straight-line depreciation

Criticality in Practice

- Prioritize Emergency Response
- Highlight Capital Projects Needs
- Rank Condition Assessment Needs
- Drive Preventative Maintenance
- Permitting and Reporting
- Helps with FEMA's CRS rating

