Advancements and Challenges of Stormwater Management Along Highways

Peter T. Weiss, PhD, PE Professor, Department of Civil Engineering

2017 INAFSM Annual Conference

VALPARAISO UNIVERSITY

Highway Stormwater Management

US 30 in Merrillville, IN (Photo courtesy of Joey B. Lax-Salinas)

Stormwater Management Goals

- Volume Reduction
- Rate Control
- Contaminant Retention
 - Sediment (or TSS)
 - Nutrients (N & P)
 - Metals (Cd, Cu, Pb, Zn, etc.)
 - Oils & Greases
 - Chloride

Contaminant Sources

- Vehicles
 - Motor oil: Phosphorus, oils
 - Batteries: Lead, nickel
 - Brakes: Cd, Cu, Pb, Zn
 - Tires: TSS, Cd, Cu, Pb, Zn
 - Electronics: Copper
- Buildings
 - Metal roofs, flashing, siding, gutters
- Atmospheric Deposition

Dissolved & Particulate Fractions

Adapted from Pitt et al. 2005. Image courtesy of Andy Erickson

Stormwater Management Options

- Permeable Pavements
 - Permeable Pavement Shoulders
 - Open Graded Friction Course
- Drainage Swales
- Iron Enhanced Sand Filter Check Dams

Conventional Pavement

- Agg-Agg Contact
- Low void content
- High Stability

Photo courtesy of M. Barrett

Permeable Pavement

- Agg-Agg Contact
- High void content (15-25%)

Photos courtesy of M. Barrett and perviouspavement.org

Full-Depth Permeable Pavement

- Stone reservoir under permeable pavement
- Underdrains, if necessary
- Infiltration into soil subgrade

Permeable Pavement Shoulders

- Full depth
- Must separate permeable reservoir from road subbase
- Found viable by Caltrans and NCHRP

Permeable Pavement Shoulders

South Bend, Indiana (Photo courtesy of Brian Lutey, Ozinga)

Maintenance of PP Shoulders

Do not sand

- Remove snow (no raised blades)
- Regular visual inspection: Clogging & durability
- Measure infiltration: ASTM C1701-09/ASTM C1781-13
- Vacuum sweeping: High risk areas 2x/year
- Inspection ports: Monitor reservoir drainage

Performance of PP Shoulders

- Initial Infiltration rates > 200 cm/hr
- May achieve up to 40% volume reduction in low permeable soils
- Typical contaminant retention:
 - 85% Total Suspended Solids
 - 35% Total Phosphorus
 - 30% Total Nitrogen

Source: Drake 2013, Hein 2013, NCDENR 2012

Image source: Delaware Free News

Construction Cost of Full depth Permeable Pavement

 Pavement Costs (\$/yd²): ASPHALT - Conventional Asphalt: \$23.00 - \$24.50 \$31.00 - \$48.40 – Porous Asphalt: CONCRETE \$29.25 - \$47.25 - Conventional Concrete: \$60.75 - \$71.21 - Pervious Concrete:

Source: Rowe 2010, UMD, Concrete Network.

Open Graded Friction Course (OGFC)

- Placed over conventional pavement
- 25-50 mm thick
- ~20% voids
- Vertical then lateral infiltration
- 8-10 year life

Image source: Barrett 2008

 $\overline{\mathbf{O}}$

Image source: Barrett 2008

OGFC core impregnated with fluorescent epoxy after > 2.5 years of service

Image source: Barrett 2008

Spray reduction may mean less TSS on road surface

(Video source: Plantmix Asphalt Industry of KY)

OGFC Test on I74 - Indianapolis

- Test section of OGFC east of Indianapolis in 2003
- Monitored for 4 years (until 5 years old)
- OGFC can "perform well under Indiana conditions"

- "Voids did not clog over the life of the study"
- "INDOT now has a new tool..."

McDaniel et al. 2010

OGFC Test on I74 - Indianapolis

- Not recommended for slower traffic
- OGFC was colder, retained snow and ice longer
- Required 1-2 additional salt applications

I74 OGFC after 5 years of service (McDaniel et al. 2010).

Winter Maintenance of OGFC

- Winter infiltration may decrease 90-100%
- Use pre-wetted salts & increase frequency

– More anti-icing agent (50 – 300% increase)

- Do not use with frequent snowplowing
- OGFC no worse than conventional pavements in Switzerland winter

Backstrom & Bergstrom 2002, Camomilla et al. 1990, FHWA 2005, Isenring et al. 1990, Moore et al. 2001

Limitations of OGFC

- Ice will form more quickly: Need "early and close attention"
- Lower friction with locked wheels
- Not for use in:
 - Urban or high solids areas (i.e. farms)
 - Low volume roads (ADT < 1000)
 - Curbed areas or areas requiring handwork
 - Heavily snow plowed areas
 - Projects with long hauls (draindown)

OGFC on US 59 in TX (from Texas A&M Transportation Institute) NCHRP 2009

Highway Drainage Swales

Monitoring of a swale in California.

Image : Barrett 2004

Swale Retention Performance

- TSS Removal typically > 70%
- TSS Removal on side slope or embankment
 - -59 82%, 2 m from EOP
 - -93 96%, 4 m from EOP
- No N or P removal (may increase)
- Total metals reduced

Barrett 2008 Image source: sdstate.edu

Impact of Median Width

Performance of highway swale in Sacramento, CA. Slope = 33%

Barrett 2004

Recommendations

- Vegetative type, height, width, residence time have little or no impact on performance
- Maintain healthy vegetation over >90% area
- Substantial removal for slopes up to 30%
- Maximize length of slide slope (up to 4.6m)

Avoid sediment lip at edge of pavement

Remove grass clippings and sediment

Monitoring of a highway median in Washington. (Ahmed et

al. 2014, Barrett et al. 1998, Barrett 2004, Lancaster 2009, Li et al. 2008. Image: Cory Lancaster.)

Drainage Swale Maintenance Costs

Maintenance Activity	Cost (2013)		
Annual O&M*	5-6% of total construction \$		
Swale: Mow & sediment removal	ment removal \$6-\$13 per foot		
Concrete end aprons: Sediment removal	\$285 per apron		
Break up soil to 16-20 inches	\$420 per acre		
Maintenance Activity	Person-hours		
Swale: Mow & sediment removal	0.22 - 0.28 per foot		
Concrete end aprons: Sediment removal	5.7 per apron		

Source: Ahmed et al. 2014, US EPA 1999, MnDOT personal communication except as noted. * US EPA 1999. Photo: roads.Maryland.gov

Swale Hydraulic Model

- Grid established over entire channel
- Model infiltration: Green-Ampt eq.
- Model flow: Kinematic Wave eq.
- Calculate volume & fraction of runoff

Field Verification of Hydraulic Model

Field Verification of Hydraulic Model

Minneapolis - St. Paul International Airport

Percent rainfall volume and frequency graph

(Garcia-Serrana et al. 2016)

Rainfall Depth	PRV (Annual	PDF (Annual	Infiltration (%)	Annual
(in)	Rainfall)	Rainfall)		Performance
9	100.0%		6.0%	
8	99.0%	1.0%	6.8%	0.1%
7	98.3%	0.7%	7.7%	0.1%
6	98.0%	0.3%	9.0%	0.03%
5	97.8%	0.2%	10.8%	0.02%
4	97.6%	0.2%	13.4%	0.02%
3	97.0%	0.6%	17.7%	0.1%
2.6	94.0%	3.0%	20.4%	0.6%
2.2	88.0%	6.0%	23.9%	1.3%
2	87.0%	1.0%	26.1%	0.2%
1.6	80.0%	7.0%	Avg = 36%	2.0%
1.2	70.0%	10.0%		3.6%
1	63.0%	7.0%	46.6%	3.0%
0.8	52.0%	11.0%	55.6%	5.6%
0.6	40.0%	12.0%	70.0%	7.5%
0.4	22.0%	18.0%	94.1%	14.8%
0.2	6.0%	16.0%	100.0%	15.5%
0.1	0.0%	6.0%	100.0%	6.0%

 $\Sigma = 60.6\%$

Example: Ws/Wr = 0.4, Ksat = 2.03 cm/hr (Garcia-Serrana et al. 2016)

Saturated Hydraulic Conductivity, Ksat (cm/h)

Annual Infiltration Performance using MSP historic rainfall data. (Garcia-Serrana et al. 2016)

Drainage Swales Infiltration Capacity

Modified Philip Dunne (MPD) Infiltrometer & In field measurements (Ahmed et al. 2014)

Wide Variation in Permeability

$K_{\text{sat-eff}} = 0.32(K_{\text{avg}}) + 0.68(K_{\text{geomean}})$

~20 measurements in 350 m long swale Spatial variation of K_{sat} adjacent to HWY 212 near Twin Cities (Ahmed et al. 2014, 2015; Weiss & Gulliver 2015)

Iron-Enhanced Sand Filtration (IESF)

Maplewood, MN Iron-enhanced surface sand filter

- Targets dissolved P
- 5-7% Fe w/ C33 sand
- Iron rusts (+ charge)
- Phosphate (- charge)
- P adsorbs to Fe
- Up to 70-90% dissolved P retained
- Used in surface sand filters in Minnesota

Photo Source: Barr Engineering & MPCA

IESF for Highway Swales

- Check dam w/ filter
- Iron-sand mix socks
- Supported by cage

- 7% iron by weight
- Sand d₅₀ = 1.2 mm
- Larger than C33 (d₅₀
 = 0.7 mm)

Schematic of IESF Check Dam (Natarajan & Gulliver 2015)

IESF for Highway Swales

Iron-enhanced sand mix

IESF Check Dam, TH5 in Stillwater, MN

(Natarajan & Gulliver 2015)

Testing of IESF Check Dam

Water truck testing, TH 5 in Stillwater, MN

(Natarajan & Gulliver 2015)

Test Results

Each data point is average concentration of 20 L synthetic runoff volume

Water truck synthetic runoff test results.

(Natarajan & Gulliver 2015)

Natural Rainstorm Monitoring

IESF Check Dam: 35% P retention. Unmodified Check Dam: 14% P increase.

Rainstorm monitoring results, TH 5 in Stillwater, MN. (Natarajan & Gulliver 2015)

Summary and Conclusions

- Highway stormwater management is challenging due to limited space
- Permeable pavement shoulders have the potential to reduce runoff volumes and contaminant loads
- Open graded friction courses can reduce TSS & total metal load

Heavy Rain in Central Indiana on June 15, 2016. Photo: Kim Mosier

Summary and Conclusions (Cont')

- Typical swales can reduce runoff volume, TSS & metal loads
- A method has been developed to estimate annual infiltration performance of swales, most of which occurs on side slope
- IESF check dams have the potential to reduce dissolved phosphorus and dissolved metal loads

Heavy Rain in Central Indiana on June 15, 2016. Photo: Kim Mosier

Thank you for your attention!

Questions?

Peter.Weiss@valpo.edu

VALPARAISO UNIVERSITY

Photo Source: roads.Maryland.gov

References (page 1)

- Ahmed, F., Natarajan, P., Gulliver, J.S., Weiss, P.T., and Nieber, J.L. 2014. Assessing and Improving Pollution Prevention by Swales. Minnesota Department of Transportation, St. Paul, MN.
- Ahmed, F., Gulliver, J.S., and Nieber, J.L. 2015. Field infiltration measurements in grassed roadside ditches: Spatial and temporal variability. *Journal of Hydrology*, 530:604-611.
- Bäckström, M., and Bergström, A. 2000. Draining function of porous asphalt during snowmelt and temporary freezing. Canadian Journal of Civil Engineering, Vol. 27, pp. 594-598.
- Barrett, M.E. 2008. Effects of a Permeable Friction Course on Highway Runoff. Journal of Irrigation and Drainage Engineering, 134(5):646-651.
- Barrett, M.E. 2004. Performance and Design of Vegetated BMPs in the Highway Environment. Proceedings of the World Water and Environmental Congress, Salt Lake City, Utah, June 27-July 1.
- Caltrans, 2004. BMP Retrofit Pilot Program, Final Report, CTSW-RT-01-050, Caltrans Division of Environmental Analysis, Sacramento, California.
- Camomilla, G., Malgarini, M. and Gervasio, S. 1990. Sound Absorption and Winter Performance of Porous Asphalt Pavement. *Journal of the Transportation Research Board*, No. 1265, TRB, National Research Council, Washington, D.C., pp. 1-8.
- Chai, L., Kayhanian, M., Givens, B., and Harvey, J.T. 2012. Hydraulic Performance of Fully Permeable Highway Shoulder for Storm Water Runoff Management. Journal of Environmental Engineering, 138(7):711-722.
- Davis, A. P., Shokouhian, M., Shubei, N., "Loading Estimates of Lead, Copper, Cadmium, and Zinc in Urban Runoff from Specific Sources," Chemosphere, Vol. 44, p. 997-1009, 2001.

References (page 2)

Drake, J. 2013. *Performance and operation of partial infiltration permeable pavement systems in the Ontario climate*. Ph.D. Thesis, University of Guelph, Guelph, Ontario, Canada.

- Federal Highway Administration (FHWA) (2005) Quiet Pavement Systems in Europe, United States Department of Transportation, Federal Highway Administration,
- Garcia-Serrana, M., Gulliver, J.S., and Nieber, J.L. 2016. Enhancement and application of the Minnesota Dry Swale Calculator. Minnesota Department of Transportation, St. Paul, MN.
- Hein, D., Strecker E., Poresky A., Roseen R. 2013. *Permeable shoulders with stone reservoirs*. Report prepared for AASHTO, NCHRP Project 25-25, Task 82, National Cooperative Highway Research Program, Transportation Research Board.
- Lancaster, C.D., Beutel, M.W., and Yonge, D. 2009. "Evaluation of roadside infiltration to manage stormwater runoff in semiarid eastern Washington." *Environmental Engineering Science*, 26(5):935-940.
- Moore, L., Hicks, R. and Rogge, D. 2001. Design, Construction, and Maintenance Guidelines for Porous Asphalt Pavements. *Journal of the Transportation Research Board*, No. 1778, TRB, National Research Council, Washington, D.C., pp. 91-99.
- Natarajan, P., and Gulliver, J.S. 2015. Assessing iron-enhanced swales for pollution prevention. St. Anthony Fall Laboratory, University of Minnesota, Minneapolis, MN. Project Report #576.
- NCDENR. 2012. North Carolina Department of Environment and Natural Resources, *Stormwater Best Practice Manual*. Raleigh, North Carolina.

References (page 3)

- NCHRP. 2009. Construction and maintenance practices for permeable friction courses." National Cooperative Highway Research Program, Report 640. Transportation Research Board, The National Academy of Sciences, Washington, DC.
- Pitt, R., Maestre, A., Morquecho, R., Brown, T., Schueler, T., Cappiella, K., and Sturm, P. (2005). "Evaluation of NPDES Phase 1 Municipal Stormwater Monitoring Data." University of Alabama and the Center for Watershed Protection.
- Putman, B.J., and Kline, L.C. 2012. Comparison of Mix Design Methods for Porous Asphalt Mixtures. Journal of Materials in Civil Engineering, 24(11):1359-1367.
- Rowe, A., Permeable Pavement Research--Edison New Jersey, EPA National Risk Management Research Laboratory.
- Stanard, C., Candaele, R., Charbeneau, R., and Barrett, M. 2007. State of the Practice: Permeable Friction Courses. Center for Transportation Research – UT at Austin, Austin, TX.
- UMD (University of Maryland Extension) (undated). Permeable Pavement Fact Sheet.
- USEPA. (1999a). *Preliminary data summary of urban stormwater best management practices*. EPA-821-R-99-012, U.S Environmental Protection Agency, Office of Water, Washington, D.C.

References (page 4)

Virginia DCR Stormwater Design Specification No 7. 2007. http://vwrrc.vt.edu/swc/NonPBMPSpecsMarch11/VASWMBMPSpec7PERMEABLEPAVEMENT.html

- Weiss, P.T., and Gulliver, J.S. 2015. Effective saturated hydraulic conductivity of an infiltration-based stormwater control measure. Journal of Sustainable Water in the Built Environment, 1(4): 04015005.
- Winston, R.J., Hunt, W.J., Kennedy, S.G., Wright, J.D., and Lauffer, M.S. 2012. Field evaluation of storm-water control measures for highway runoff treatment. Journal of Environmental Engineering, 138(1):101-111.
- Yonge, D.R., 2000. Contaminant Detention in Highway Grass Filter Strips. Report No. WA-RD 474.1, Washington State Department of Transportation, Olympia, Washington, USA.

